Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Reprod Sci ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630173

RESUMO

Serological screening for TORCH(Toxoplasma gondii [TOX], Rubella virus [RV], Cytomegalovirus [CMV], and Herpes simplex virus [HSV]) infections is an effective method for preventing congenital infections caused by TORCH pathogens.In this study, we retrospectively analyzed the characteristics of TORCH infections in 17,807 infertile women of childbearing age in northwest China.We conducted serological detection of TORCH-pathogen-specific IgM and IgG antibodies. The seroprevalence of TORCH infections was statistically analyzed by applying χ2 and Fisher exact-probability tests to evaluate the differences among ages and across quarters of the year. The overall IgM/IgG seroprevalences of TOX, RV, CMV, HSV-1, and HSV-2 were 0.46/3.4%, 0.77/84.93%, 0.68/97.54%, 1.2/82.83%, and 0.62/10.04%, respectively. The positive rates for RV-IgM in women ≥ 40 years old were significantly higher than those for women 25-39 (P < 0.05) years of age. The seroprevalence of HSV1-IgM was higher in the third and fourth quarters of the year (seasons) (P < 0.001), and the seroprevalence of CMV-IgG was statistically significant between differences quarters (P = 0.017), and the seroprevalence of CMV-IgG in the first quarter was lower than that in the third and fourth quarters (Bonferroni correction, P = 0.009 > 0.0083), suggesting no statistically significant difference between the latter two groups. This study showed that in northwestern China the risk of acquiring primary infection by a TORCH pathogen among infertile women of childbearing age were still high, especially Toxoplasma gondii and Herpesvirus type 2 infection. Therefore, effective prevention strategies that include serological screening for TORCH should be implemented.

2.
Adv Sci (Weinh) ; : e2309126, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38477425

RESUMO

Along with the increasing integration density and decreased feature size of current semiconductor technology, heterointegration of the Si-based devices with diamond has acted as a promising strategy to relieve the existing heat dissipation problem. As one of the heterointegration methods, the microwave plasma chemical vapor deposition (MPCVD) method is utilized to synthesize large-scale diamond films on a Si substrate, while distinct structures appear at the Si-diamond interface. Investigation of the formation mechanisms and modulation strategies of the interface is crucial to optimize the heat dissipation behaviors. By taking advantage of electron microscopy, the formation of the epitaxial ß-SiC interlayer is found to be caused by the interaction between the anisotropically sputtered Si and the deposited amorphous carbon. Compared with the randomly oriented ß-SiC interlayer, larger diamond grain sizes can be obtained on the epitaxial ß-SiC interlayer under the same synthesis condition. Moreover, due to the competitive interfacial reactions, the epitaxial ß-SiC interlayer thickness can be reduced by increasing the CH4 /H2 ratio (from 3% to 10%), while further increase in the ratio (to 20%) can lead to the broken of the epitaxial relationship. The above findings are expected to provide interfacial design strategies for multiple large-scale diamond applications.

3.
Proc Natl Acad Sci U S A ; 121(9): e2316580121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377204

RESUMO

Achieving high-performance materials with superior mechanical properties and electrical conductivity, especially in large-sized bulk forms, has always been the goal. However, it remains a grand challenge due to the inherent trade-off between these properties. Herein, by employing nanodiamonds as precursors, centimeter-sized diamond/graphene composites were synthesized under moderate pressure and temperature conditions (12 GPa and 1,300 to 1,500 °C), and the composites consisted of ultrafine diamond grains and few-layer graphene domains interconnected through covalently bonded interfaces. The composites exhibit a remarkable electrical conductivity of 2.0 × 104 S m-1 at room temperature, a Vickers hardness of up to ~55.8 GPa, and a toughness of 10.8 to 19.8 MPa m1/2. Theoretical calculations indicate that the transformation energy barrier for the graphitization of diamond surface is lower than that for diamond growth directly from conventional sp2 carbon materials, allowing the synthesis of such diamond composites under mild conditions. The above results pave the way for realizing large-sized diamond-based materials with ultrahigh electrical conductivity and superior mechanical properties simultaneously under moderate synthesis conditions, which will facilitate their large-scale applications in a variety of fields.

4.
Small ; : e2309501, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38109067

RESUMO

The development of lithium-based solid-state batteries (SSBs) has to date been hindered by the limited ionic conductivity of solid polymer electrolytes (SPEs), where nonsolvated Li-ions are difficult to migrate in a polymer framework at room temperature. Despite the improved cationic migration by traditional heating systems, they are far from practical applications of SSBs. Here, an innovative strategy of light-mediated energy conversion is reported to build photothermal-based SPEs (PT-SPEs). The results suggest that the nanostructured photothermal materials acting as a powerful light-to-heat converter enable heating within a submicron space, leading to a decreased Li+ migration barrier and a stronger solid electrolyte interface. Via in situ X-ray diffraction analysis and molecular dynamics simulation, it is shown that the generated heating effectively triggers the structural transition of SPEs from a highly crystalline to an amorphous state, that helps mediate lithium-ion transport. Using the assembled SSBs for exemplification, PT-SPEs function as efficient ion-transport media, providing outstanding capacity retention (96% after 150 cycles) and a stable charge/discharge capacity (140 mA g-1 at 1.0 C). Overall, the work provides a comprehensive picture of the Li-ion transport in solid polymer electrolytes and suggests that free volume may be critical to achieving high-performance solid-state batteries.

5.
Oncol Rev ; 17: 11764, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025893

RESUMO

Neuroendocrine neoplasms (NENs) were classified separately in the 5th edition (2020) of the World Health Organization (WHO) classification of female genital malignancies. Cervical neuroendocrine carcinoma (NEC) is distinguished by its low incidence, high invasiveness, early local dissemination, and distant metastases. The purpose of this review is to outline the achievements in pathology, diagnostics, gene sequencing, and multi-modality treatment of cervical NEC.

6.
Zhongguo Zhen Jiu ; 43(10): 1219-20, 2023 Oct 12.
Artigo em Chinês | MEDLINE | ID: mdl-37802531

RESUMO

The needle-thread integrative embedding needle consists of needle handle, needle core, thread, locker and needle guard. The thread is fixed in the core by the locker. With the needle inserted into acupoint, the locker is separated from the thread, while the thread is embedded directly into acupoint, to achieve one acupoint with one needle. This type of thread embedding needle is operated simply and safely without cross infection occurrence, easy to carry.


Assuntos
Terapia por Acupuntura , Pontos de Acupuntura
7.
Materials (Basel) ; 16(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37895640

RESUMO

To reduce the use of the toxic Pb element in the Cu-Sn alloy with high friction performance, Cu-xBi-10Sn alloys with different Bi contents were prepared by gravity casting, and the effect of Bi content on the microstructure, mechanical properties and wear property of Cu-Sn alloys were studied. The results showed that the Bi element was distributed in bands or long strips on the dendritic arms and did not form compounds with other elements. With the increase in Bi content, the hardness and tensile strength of Cu-xBi-10Sn alloys present a trend of increasing first and then decreasing. When the Bi content was 7 wt.%, the maximum hardness value was obtained, and the ultimate tensile strength was close to that of Cu-10Pb-10Sn alloy. Compared with Cu-10Pb-10Sn alloy, Cu-7Bi-10Sn alloy also possessed better friction reduction and wear resistance under the oil lubrication condition.

8.
J Phys Chem Lett ; 14(38): 8421-8427, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37712525

RESUMO

Effective activation of CO2 is a primarily challenging issue in CO2 reduction to value-added hydrocarbon chemicals, due to the large energy gap between the highest-occupied and lowest-unoccupied molecular orbitals (HOMO-LUMO). Here, we employ state-of-the-art first-principles calculations to explore the synergetic role of thermal catalysis and photocatalysis in CO2 reduction, on typical single-atom scale catalyst, i.e., Cu2 magic cluster on a semiconducting two-dimensional MoS2 substrate. It is identified that only about 1% of the hot electrons excited from the MoS2 substrate by at least 6.3 eV photons may be trapped by the inert CO2 molecule at the expense of 400 fs. Moreover, the physisorption-to-chemisorption transition of CO2 can be observed within 500 fs upon overcoming an about 0.05 eV energy barrier. Contrastingly, upon chemisorption, the activated CO2δ- species may trap about 7% of the hot electron excited from the MoS2 substrate by about 2.5 eV visible photons, with a cost of 140 fs.

9.
Int Immunopharmacol ; 123: 110802, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37591122

RESUMO

BACKGROUND: The ferroptosis of neurons is an important pathological mechanism of spinal cord ischemia reperfusion injury (SCIRI). Previous studies showed that synoviolin 1 (SYVN1) is a good prognostic marker of neurodegenerative diseases, but its mechanism is still unclear. This study aims to explore the role of SYVN1 in the ferroptosis of neurons and to clarify its internal mechanism. METHODS: Rat primary spinal cord neurons were treated with oxygen-glucose deprivation (OGD) for 1, 4 or 8 h, and then cell viability, ROS and MDA levels, glutathione peroxidase (GSH-Px) activity, and the expression of ferroptosis-related proteins GPX4, FTH1 and PTGS2 were detected. OGD/R-induced neurons were transfected with pcDNA-SYVN1 or si-HMGB1, and then cell functions were detected. Transmission electron microscope (TEM) was used to detect cell ferroptosis. The interplay between SYVN1 and high mobility group box 1 (HMGB1) was confirmed with Co-immunoprecipitation (Co-IP) assay. The stability of HMGB1 was measured by ubiquitination assay. Also, cells were treated with pcDNA-SYVN1 or together with ubiquitination inhibitor MG132, as well as treated with pcDNA-SYVN1 and pcDNA-HMGB1 or together with NRF2 activator dimethyl fumarate (DMF), and then Western blotting was used to detect the expression of HMGB1, nuclear NRF2 and HO-1 proteins. In addition, SD rats were occluded left common carotid artery and aortic arch to establish a SCIRI rat model. And rats were injected intrathecal with adenovirus-mediated SYVN1 overexpression vector (Ad-SYVN1, 2 µL, virus titer 5 × 1013 transduction unit [TU]/mL) to overexpress SYVN1. The motion function of rats was quantified using the Basso Rat Scale (BMS) for Locomotion. The ferroptosis and the number of neurons in the spinal cord tissue of rats were detected. RESULTS: SYVN1 overexpression inhibited ferroptosis of SCIRI rats and OGD/R-treated primary spinal cord neurons, and down-regulated the expression of HMGB1. In terms of mechanism, the binding of SYVN1 and HMGB1 promoted the ubiquitination and degradation of HMGB1, and negatively regulated the expression of HMGB1. Moreover, under OGD/R conditions, MG132 treatment or HMGB1 overexpression eliminated the inhibitory effect of SYVN1 overexpression on the ferroptosis of neurons and the activation of the NRF2/HO-1 pathway, and DMF treatment abolished the inhibition of HMGB1 overexpression on the NRF2/HO-1 pathway. Finally, in vivo experiments showed that SYVN1 overexpression could alleviate the spinal cord ischemia-reperfusion injury in rats by down-regulating HMGB1 and promoting the activation of the NRF2/HO-1 pathway. CONCLUSION: SYVN1 regulates ferroptosis through the HMGB1/NRF2/HO-1 axis to prevent spinal cord ischemia-reperfusion injury.


Assuntos
Ferroptose , Proteína HMGB1 , Isquemia do Cordão Espinal , Animais , Ratos , Fumarato de Dimetilo , Glucose , Proteína HMGB1/genética , Fator 2 Relacionado a NF-E2/genética , Ratos Sprague-Dawley , Isquemia do Cordão Espinal/tratamento farmacológico
10.
Nano Lett ; 23(17): 8241-8248, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37594857

RESUMO

Next-generation mid-infrared (MIR) imaging chips demand free-cooling capability and high-level integration. The rising two-dimensional (2D) semimetals with excellent infrared (IR) photoresponses are compliant with these requirements. However, challenges remain in scalable growth and substrate-dependence for on-chip integration. Here, we demonstrate the inch-level 2D palladium ditelluride (PdTe2) Dirac semimetal using a low-temperature self-stitched epitaxy (SSE) approach. The low formation energy between two precursors facilitates low-temperature multiple-point nucleation (∼300 °C), growing up, and merging, resulting in self-stitching of PdTe2 domains into a continuous film, which is highly compatible with back-end-of-line (BEOL) technology. The uncooled on-chip PdTe2/Si Schottky junction-based photodetector exhibits an ultrabroadband photoresponse of up to 10.6 µm with a large specific detectivity. Furthermore, the highly integrated device array demonstrates high-resolution room-temperature imaging capability, and the device can serve as an optical data receiver for IR optical communication. This study paves the way toward low-temperature growth of 2D semimetals for uncooled MIR sensing.

11.
Eur J Pharmacol ; 957: 176016, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37634842

RESUMO

Allyl-isothiocyanate (AITC) is a common Isothiocyanates (ITC) and its chemo-preventive and anti-tumor effects are believed to be related to the activation of NF-E2 p45-related Factor 2 (Nrf2). However, its anti-tumor effects on colorectal cancer (CRC) are not well elucidated. Here, we investigated the therapeutic in vitro and/or in vivo effects and mechanisms of action (MOA) for AITC on CRC cell line HCT116 (human) and MC38 (mouse). AITC treatment in a low concentration range (1 mg/kg in vivo) significantly inhibited the tumor cell growth and increased the expression of p21 and Nrf2. The AITC-mediated induction of p21 was dependent on Nrf2 but independent on p53 in vitro and in vivo at low dose. In contrast, the high dose of AITC (5 mg/kg in vivo) failed to increase substantial levels of p21/MdmX, and impaired the total antioxidant capacity of tumors and subsequent anti-tumor effect in vivo. These results suggest that an optimal dose of AITC is important and required for the proper Nrf2 activation and its anti-CRC effects and thus, providing insights into the potential applications of AITC for the prevention and treatment of CRC.


Assuntos
Neoplasias Colorretais , Fator 2 Relacionado a NF-E2 , Humanos , Animais , Camundongos , Isotiocianatos/farmacologia , Isotiocianatos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico
12.
Small Methods ; 7(10): e2300523, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37452519

RESUMO

Lithium-sulfur batteries (LSBs) as a next-generation promising energy storage device have a great potential commercial application due to their high specific capacity and energy density. However, it is still a challenge to real-time monitor the evolution process of polysulfides during the LSBs discharge process. Herein, an in situ electrochemical-fluorescence technology is developed to measure the fluorescence intensity change of cadmium sulfide quantum dots (CdS QDs) during the LSBs discharge process in real-time, which could monitor the evolution process of polysulfides. First, the real-time fluorescent spectrum and confocal fluorescence imaging of discharge processes for LSBs with CdS QDs are integrally illustrated. Furthermore, the fluorescence spectra and imaging results show that CdS QDs could immobilize polysulfides through bonding with polysulfides to improve the LSB device performance. This in situ electrochemical-fluorescence technology provides a new in situ and real-time-monitor method for better understanding the working mechanism of LSBs.

13.
Adv Mater ; 35(44): e2304120, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37467076

RESUMO

Sluggish kinetics and parasitic shuttling reactions severely impede lithium-sulfur (Li-S) battery operation; resolving these issues can enhance the capacity retention and cyclability of Li-S cells. Therefore, an effective strategy featuring core-shell-structured Co/Ni bimetal-doped metal-organic framework (MOF)/sulfur nanoparticles is reported herein for addressing these problems; this approach offers unprecedented spatial confinement and abundant catalytic sites by encapsulating sulfur within an ordered architecture. The protective shells exhibit long-term stability, ion screening, high lithium-polysulfide adsorption capability, and decent multistep catalytic conversion. Additionally, the delocalized electrons of the MOF endow the cathodes with superior electron/lithium-ion transfer ability. Via multiple physicochemical and theoretical analysis, the resulting synergistic interactions are proved to significantly promote interfacial charge-transfer kinetics, facilitate sulfur conversion dynamics, and inhibit shuttling. The assembled Li-S batteries deliver a stable, highly reversible capacity with marginal decay (0.075% per cycle) for 400 cycles at 0.2 C, a pouch-cell areal capacity of 3.8 mAh cm-2 for 200 cycles under a high sulfur loading, as well as remarkably improved pouch-cell performance.

14.
Adv Healthc Mater ; 12(27): e2301081, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37380172

RESUMO

Cells are known to perceive their microenvironment through extracellular and intracellular mechanical signals. Upon sensing mechanical stimuli, cells can initiate various downstream signaling pathways that are vital to regulating proliferation, growth, and homeostasis. One such physiologic activity modulated by mechanical stimuli is osteogenic differentiation. The process of osteogenic mechanotransduction is regulated by numerous calcium ion channels-including channels coupled to cilia, mechanosensitive and voltage-sensitive channels, and channels associated with the endoplasmic reticulum. Evidence suggests these channels are implicated in osteogenic pathways such as the YAP/TAZ and canonical Wnt pathways. This review aims to describe the involvement of calcium channels in regulating osteogenic differentiation in response to mechanical loading and characterize the fashion in which those channels directly or indirectly mediate this process. The mechanotransduction pathway is a promising target for the development of regenerative materials for clinical applications due to its independence from exogenous growth factor supplementation. As such, also described are examples of osteogenic biomaterial strategies that involve the discussed calcium ion channels, calcium-dependent cellular structures, or calcium ion-regulating cellular features. Understanding the distinct ways calcium channels and signaling regulate these processes may uncover potential targets for advancing biomaterials with regenerative osteogenic capabilities.


Assuntos
Canais de Cálcio , Mecanotransdução Celular , Mecanotransdução Celular/fisiologia , Osteogênese , Materiais Biocompatíveis/farmacologia , Cálcio , Diferenciação Celular , Via de Sinalização Wnt
15.
Appl Microbiol Biotechnol ; 107(12): 3955-3966, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37166480

RESUMO

Fusion tag technology is an important tool for rapid separation, purification, and characterization of proteins. Combined with monoclonal antibodies, tag epitope systems can be rapidly adapted to many assay systems. A monoclonal antibody that reacts with the matrix protein of the rabies virus CVS-11 strain was reported. The epitope (termed M) targeted by this antibody contains only six amino acids. We examine whether this specific sequence epitope can be applied as a protein tag. We show ectopic expression of M-tagged proteins has little impact on cell viability or major signaling pathways. The M tag system can be used for western blotting, immunoprecipitation, immunofluorescence staining, and flow cytometry assays. The results indicate the specificity, sensitivity, and versatility of this novel epitope tag system are comparable to the widely used FLAG tag system, providing researchers with an additional tool for molecular analysis. KEY POINTS: • A short peptide (Pro Pro Tyr Asp Asp Asp) can be applied as a new tag. • The new epitope-tagging fusion system has no effect on the main cellular signaling pathway. • The epitope-tagging fusion system can be widely used for western blotting, immunoprecipitation, immunofluorescence, flow cytometry, etc.


Assuntos
Vírus da Raiva , Epitopos , Vírus da Raiva/genética , Peptídeos/metabolismo , Anticorpos Monoclonais , Western Blotting
16.
iScience ; 26(3): 106131, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36879822

RESUMO

Ovarian granulosa cells (GCs) in the follicle are the important mediator of steroidogenesis and foster oocyte maturation. Evidences suggested that the function of GCs could be regulated by S-palmitoylation. However, the role of S-palmitoylation of GCs in ovarian hyperandrogenism remains elusive. Here, we demonstrated that the protein from GCs in ovarian hyperandrogenism phenotype mouse group exhibits lower palmitoylation level compared with that in the control group. Using S-palmitoylation-enriched quantitative proteomics, we identified heat shock protein isoform α (HSP90α) with lower S-palmitoylation levels in ovarian hyperandrogenism phenotype group. Mechanistically, S-palmitoylation of HSP90α modulates the conversion of androgen to estrogens via the androgen receptor (AR) signalling pathway, and its level is regulated by PPT1. Targeting AR signaling by using dipyridamole attenuated ovarian hyperandrogenism symptoms. Our data help elucidate ovarian hyperandrogenism from perspective of protein modification and provide new evidence showing that HSP90α S-palmitoylation modification might be a potential pharmacological target for ovarian hyperandrogenism treatment.

17.
Adv Healthc Mater ; 12(17): e2202750, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36863404

RESUMO

The temporospatial equilibrium of phosphate contributes to physiological bone development and fracture healing, yet optimal control of phosphate content has not been explored in skeletal regenerative materials. Nanoparticulate mineralized collagen glycosaminoglycan (MC-GAG) is a synthetic, tunable material that promotes in vivo skull regeneration. In this work, the effects of MC-GAG phosphate content on the surrounding microenvironment and osteoprogenitor differentiation are investigated. This study finds that MC-GAG exhibits a temporal relationship with soluble phosphate with elution early in culture shifting to absorption with or without differentiating primary bone marrow-derived human mesenchymal stem cells (hMSCs). The intrinsic phosphate content of MC-GAG is sufficient to stimulate osteogenic differentiation of hMSCs in basal growth media without the addition of exogenous phosphate in a manner that can be severely reduced, but not eliminated, by knockdown of the sodium phosphate transporters PiT-1 or PiT-2. The contributions of PiT-1 and PiT-2 to MC-GAG-mediated osteogenesis are nonredundant but also nonadditive, suggestive that the heterodimeric form is essential to its activity. These findings indicate that the mineral content of MC-GAG alters phosphate concentrations within a local microenvironment resulting in osteogenic differentiation of progenitor cells via both PiT-1 and PiT-2.


Assuntos
Osteogênese , Fosfatos , Humanos , Fosfatos/farmacologia , Alicerces Teciduais , Colágeno , Diferenciação Celular , Glicosaminoglicanos , Células Cultivadas
18.
Front Pediatr ; 11: 1104001, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937947

RESUMO

Objective: To explore the clinical characteristics of pediatric anti-gamma-aminobutyric acid-B receptor (GABABR) encephalitis to enhance the understanding and improve the diagnostic and therapeutic strategies for this disease. Methods: We report a rare case of a female pediatric patient with anti-GABABR encephalitis who was treated at the Children's Hospital of Zhejiang University School of Medicine. Literature search was performed to explore the clinical characteristics of pediatric anti-GABABR encephalitis. Results: The patient exhibited recurrent epileptic seizure, status epilepticus, and psychiatric symptoms at the age of 11 years and 10 months. Anti-GABABR antibodies were positive in cerebrospinal fluid and serum. Brain magnetic resonance imaging (MRI) exhibited abnormal signals in the left hippocampus. Symptoms and abnormality of brain MRI were improved after administration of immunosuppressants, anti-seizure and antipsychotic drugs. Two of pediatric anti-GABABR encephalitis with clinical data were identified through literature search. Analysis of these three cases suggested that the pediatric patients primarily experienced limbic encephalitis, with no tumor incidence. A favorable immunotherapy response was demonstrated with a superior prognosis in all the cases. Conclusions: We reported a pediatric anti-GABABR encephalitis case with early age of onset. Promt autoimmune antibody testing and tumor screening, as well as immunomodulatory treatment immediately after a definitive diagnosis are warranted to improve prognosis.

19.
Nanomaterials (Basel) ; 13(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36839119

RESUMO

Constructing a heterogeneous interface using different components is one of the effective measures to achieve the bifunctionality of nanocatalysts, while synergistic interactions between multiple interfaces can further optimize the performance of single-interface nanocatalysts. The non-precious metal nanocatalysts MoS2/NiSe2/reduced graphene oxide (rGO) bilayer sandwich-like nanostructure with multiple well-defined interfaces is prepared by a simple hydrothermal method. MoS2 and rGO are layered nanostructures with clear boundaries, and the NiSe2 nanoparticles with uniform size are sandwiched between both layered nanostructures. This multiple-interfaced sandwich-like nanostructure is prominent in catalytic water splitting with low overpotential for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) and almost no degradation in performance after a 20 h long-term reaction. In order to simulate the actual overall water splitting process, the prepared nanostructures are assembled into MoS2/NiSe2/rGO||MoS2/NiSe2/rGO modified two-electrode system, whose overpotential is only 1.52 mV, even exceeded that of noble metal nanocatalyst (Pt/C||RuO2~1.63 mV). This work provides a feasible idea for constructing multi-interface bifunctional electrocatalysts using nanoparticle-doped bilayer-like nanostructures.

20.
Light Sci Appl ; 12(1): 5, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36588125

RESUMO

Being capable of sensing broadband infrared (IR) light is vitally important for wide-ranging applications from fundamental science to industrial purposes. Two-dimensional (2D) topological semimetals are being extensively explored for broadband IR detection due to their gapless electronic structure and the linear energy dispersion relation. However, the low charge separation efficiency, high noise level, and on-chip integration difficulty of these semimetals significantly hinder their further technological applications. Here, we demonstrate a facile thermal-assisted tellurization route for the van der Waals (vdW) growth of wafer-scale phase-controlled 2D MoTe2 layers. Importantly, the type-II Weyl semimetal 1T'-MoTe2 features a unique orthorhombic lattice structure with a broken inversion symmetry, which ensures efficient carrier transportation and thus reduces the carrier recombination. This characteristic is a key merit for the well-designed 1T'-MoTe2/Si vertical Schottky junction photodetector to achieve excellent performance with an ultrabroadband detection range of up to 10.6 µm and a large room temperature specific detectivity of over 108 Jones in the mid-infrared (MIR) range. Moreover, the large-area synthesis of 2D MoTe2 layers enables the demonstration of high-resolution uncooled MIR imaging capability by using an integrated device array. This work provides a new approach to assembling uncooled IR photodetectors based on 2D materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA